If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-150x+1400=0
a = 1; b = -150; c = +1400;
Δ = b2-4ac
Δ = -1502-4·1·1400
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-130}{2*1}=\frac{20}{2} =10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+130}{2*1}=\frac{280}{2} =140 $
| 4y+11=5- | | 8u=4u- | | 18,66=45,552*x-2,529*x^2 | | u/7=5/8 | | 0.12x+x=62998 | | 0.12x+x=58499 | | 6x+(-3x)=14x-4 | | 6x+(-3x)=14x | | 9x-4x+3=-3x+27 | | 91,7=44,175*x-2,85*x^2 | | 2x+3x+4=7x+9 | | 2x-3=3x- | | 6x-2=-3x+25 | | 7x-5/x=0x10 | | 7x-5;x=0x10 | | 6x-4(2-x)=3 | | 8(4+x=72 | | x-10=2(425-x) | | 0.7x=-28 | | 2y+10+y=425 | | 2x^2+18x+9=0 | | 1/2x+6=1/4x+10 | | 175=14.9x | | 1900+20q=1000-10q | | 6x+40=× | | -6.6z+11+1.3+2z=0 | | -4(h+8)=65 | | 4x+34=18x+1 | | 3a-5=4(5a-3) | | X/2+x/4+x/8=3x/4+1/4 | | 7v+3=12 | | 7v+3=9 |